uhugo.post_install.detect_providers¶
- class uhugo.post_install.detect_providers.Provider(*, name: str | None = None, project: str | None = None, file_name: str | None = None, api_key: str | None = None, account_id: str | None = None, email_address: str | None = None, path: str | None = None)[source]¶
Bases:
BaseModel
This holds the information about the provider
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- account_id: str | None¶
- api_key: str | None¶
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Self ¶
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self ¶
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, exclude: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ¶
- email_address: str | None¶
- file_name: str | None¶
- classmethod from_orm(obj: Any) Self ¶
- json(*, include: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, exclude: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ¶
- model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}¶
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self ¶
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Self ¶
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep – Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, exclude: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, serialize_as_any: bool = False) dict[str, Any] ¶
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include – A set of fields to include in the output.
exclude – A set of fields to exclude from the output.
context – Additional context to pass to the serializer.
by_alias – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset – Whether to exclude fields that have not been explicitly set.
exclude_defaults – Whether to exclude fields that are set to their default value.
exclude_none – Whether to exclude fields that have a value of None.
round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, exclude: Set[int] | Set[str] | Mapping[int, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | Mapping[str, Set[int] | Set[str] | Mapping[int, IncEx | Literal[True]] | Mapping[str, IncEx | Literal[True]] | Literal[True]] | None = None, context: Any | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, serialize_as_any: bool = False) str ¶
Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent – Indentation to use in the JSON output. If None is passed, the output will be compact.
include – Field(s) to include in the JSON output.
exclude – Field(s) to exclude from the JSON output.
context – Additional context to pass to the serializer.
by_alias – Whether to serialize using field aliases.
exclude_unset – Whether to exclude fields that have not been explicitly set.
exclude_defaults – Whether to exclude fields that are set to their default value.
exclude_none – Whether to exclude fields that have a value of None.
round_trip – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
serialize_as_any – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None¶
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields: ClassVar[Dict[str, FieldInfo]] = {'account_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'api_key': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'email_address': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'file_name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'path': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'project': FieldInfo(annotation=Union[str, NoneType], required=False, default=None)}¶
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]¶
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ¶
Generates a JSON schema for a model class.
- Parameters:
by_alias – Whether to use attribute aliases or not.
ref_template – The reference template.
schema_generator – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ¶
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ¶
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ¶
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors – Whether to raise errors, defaults to True.
_parent_namespace_depth – The depth level of the parent namespace, defaults to 2.
_types_namespace – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None) Self ¶
Validate a pydantic model instance.
- Parameters:
obj – The object to validate.
strict – Whether to enforce types strictly.
from_attributes – Whether to extract data from object attributes.
context – Additional context to pass to the validator.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None) Self ¶
Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data – The JSON data to validate.
strict – Whether to enforce types strictly.
context – Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None) Self ¶
Validate the given object with string data against the Pydantic model.
- Parameters:
obj – The object containing string data to validate.
strict – Whether to enforce types strictly.
context – Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- name: str | None¶
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self ¶
- classmethod parse_obj(obj: Any) Self ¶
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Self ¶
- path: str | None¶
- project: str | None¶
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ¶
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ¶
- classmethod update_forward_refs(**localns: Any) None ¶
- classmethod validate(value: Any) Self ¶